Global dynamics of some system of second-order difference equations
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we study the boundedness and persistence of positive solution, existence invariant rectangle, local global behavior, rate convergence solutions following systems exponential difference equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> $ \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*} </tex-math></disp-formula></p><p style='text-indent:20px;'>where parameters <inline-formula><tex-math id="M1">$ \alpha_i,\ \beta_i,\ \gamma_i $</tex-math></inline-formula> for id="M2">$ i \in \{1,2\} initial conditions id="M3">$ x_{-1}, x_0, y_{-1}, y_0 are real numbers. Some numerical example given to illustrate our theoretical results.</p>
منابع مشابه
Behavior of a Competitive System of Second-Order Difference Equations
We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x n+1 = (α 1 + β 1 x(n-1))/(a1 + b1 y n), y(n+1) = (α 2 + β 2 y(n-1))/(a2 + b2 xn), where the parameters α i, β i, a i, and b i for i ∈ {1,2} a...
متن کاملSolvable Product-type System of Difference Equations of Second Order
We show that the system of difference equations zn+1 = wa n zb n−1 , wn+1 = zc n wd n−1 , n ∈ N0, where a, b, c, d ∈ Z, and initial values z−1, z0, w−1, w0 ∈ C, is solvable in closed form, and present a method for finding its solutions.
متن کاملSome Oscillation Results for Second Order Neutral Type Difference Equations
This paper is concerned with the oscillatory behavior of second order neutral difference equations. Four oscillation theorems for such equations are established and examples are given to illustrate the results. Mathematics subject classification (2010): 39A11.
متن کاملGlobal Dynamics of Some Periodically Forced, Monotone Difference Equations
We study a class of periodically forced, monotone difference equations motivated by applications from population dynamics. We give conditions under which there exists a globally attracting cycle and conditions under which the attracting cycle is attenuant.
متن کاملOn a System of Second-Order Nonlinear Difference Equations
This paper is concerned with dynamics of the solution to the system of two second-order nonlinear difference equations 1 1 1 n n n n x x A x y + − − = + , 1 1 1 n n n n y y A x y + − − = + , n = 0,1, , where ( ) 0, A∈ ∞ , ( ) 0, i x− ∈ ∞ , ( ) 0, i y− ∈ ∞ , i = 0, 1. Moreover, the rate of convergence of a solution that converges to the equilibrium of the system is discussed. Finally, some num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic research archive
سال: 2021
ISSN: ['2688-1594']
DOI: https://doi.org/10.3934/era.2021077