Global dynamics of some system of second-order difference equations

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, we study the boundedness and persistence of positive solution, existence invariant rectangle, local global behavior, rate convergence solutions following systems exponential difference equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> $ \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*} </tex-math></disp-formula></p><p style='text-indent:20px;'>where parameters <inline-formula><tex-math id="M1">$ \alpha_i,\ \beta_i,\ \gamma_i $</tex-math></inline-formula> for id="M2">$ i \in \{1,2\} initial conditions id="M3">$ x_{-1}, x_0, y_{-1}, y_0 are real numbers. Some numerical example given to illustrate our theoretical results.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavior of a Competitive System of Second-Order Difference Equations

We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: x n+1 = (α 1 + β 1 x(n-1))/(a1 + b1 y n), y(n+1) = (α 2 + β 2 y(n-1))/(a2 + b2 xn), where the parameters α i, β i, a i, and b i for i ∈ {1,2} a...

متن کامل

Solvable Product-type System of Difference Equations of Second Order

We show that the system of difference equations zn+1 = wa n zb n−1 , wn+1 = zc n wd n−1 , n ∈ N0, where a, b, c, d ∈ Z, and initial values z−1, z0, w−1, w0 ∈ C, is solvable in closed form, and present a method for finding its solutions.

متن کامل

Some Oscillation Results for Second Order Neutral Type Difference Equations

This paper is concerned with the oscillatory behavior of second order neutral difference equations. Four oscillation theorems for such equations are established and examples are given to illustrate the results. Mathematics subject classification (2010): 39A11.

متن کامل

Global Dynamics of Some Periodically Forced, Monotone Difference Equations

We study a class of periodically forced, monotone difference equations motivated by applications from population dynamics. We give conditions under which there exists a globally attracting cycle and conditions under which the attracting cycle is attenuant.

متن کامل

On a System of Second-Order Nonlinear Difference Equations

This paper is concerned with dynamics of the solution to the system of two second-order nonlinear difference equations 1 1 1 n n n n x x A x y + − − = + , 1 1 1 n n n n y y A x y + − − = + ,  n = 0,1, , where ( ) 0, A∈ ∞ , ( ) 0, i x− ∈ ∞ , ( ) 0, i y− ∈ ∞ , i = 0, 1. Moreover, the rate of convergence of a solution that converges to the equilibrium of the system is discussed. Finally, some num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic research archive

سال: 2021

ISSN: ['2688-1594']

DOI: https://doi.org/10.3934/era.2021077